RESOURCES FOR

"HSC-I MATHEMATICS"

ZUEB EXAMINATIONS 2021

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from www.zueb.pk to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

1: Multiple Choice Questions:

The Multiple-Choice Questions with a stem, correct answer and 3 distractors or plausible wrong answers format is designed to assess the content and thinking of students from; R (Remembering); U(Understanding) and A (Applying, Analyzing, Evaluating, Creating). The questions are also classified into three difficulty levels accordingly; D (DIFFICULT), M (MODERATE), E (EASY)

HOW TO ATTEMPT AN MCQ:

MCQ:

- EACH MCQ HAS FOUR OPTIONS, A, B, C AND D. SELECT ONE OPTION AS THE BEST ANSWER AND FILL IN THE CIRCLE OF THAT OPTION, FOLLOWING THE INSTRUCTIONS GIVEN BY THE INVIGILATOR.
- USE BLACK PEN/PENCIL TO FILL IN THE CIRCLE.

Correct Way	Wrong Ways		
1	1	2	3
(a)	(a)	(a)	(a)
(b)	(b)	(b)	(b)
(c)	(b)	(c)	(d)
(d)	(d)	(d)	(d)

S\#	MCQ'S MATERIAL	KEY	CL	DL
1	A Set is A. A collection objects B. A group of objects C. A collection of objects with a fixed common property D. A well define collection of object	A well define collection of object	K/A	E
2	Which is not example of a set? A. $\quad\{1,2,3,4\}$ B. $\{a, b, c, d\}$ C. $\quad\{\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{q}\}$ D. None of these	$\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{q}\}$	K/A	E
3	If $\mathrm{N}=\{1,2,3,4, \ldots \ldots\}, \mathbf{O}=\{1,3,5,7, \ldots \ldots\}$, then $\mathrm{N} \cup \mathrm{O}=$? A. $\quad 0$ B. $\quad \mathrm{N}$ $\begin{array}{ll}\text { C. } & \varphi \\ \text { D. } & \quad \mathbf{W}\end{array}$	N	K/A	M

4	If $A=\{1,2\}, B=\{1,2,3\}$ then A. $\quad \mathbf{B} \subseteq \mathbf{A}$ B. $\quad \mathbf{B}=\mathbf{A}$ C. $\quad \mathbf{A} \subseteq \mathbf{B}$ D. None of these	$\mathbf{A} \subseteq \mathbf{B}$	K/A	M
5	Which is subset of every set? A. U B. $\quad \mathrm{X}$ C. $\quad \varphi$ D. None of these	φ	K/A	E
6	Number of a subset is a set; A. $\quad \mathbf{n}^{2}$ B. $\quad 2^{\mathrm{n}}$ C. $\quad 2 \mathrm{n}$ D. None of these	$2^{\text {n }}$	K/A	E
7	The null or empty set is denoted by; A. $\quad \varphi$ B. \{\} C. Both A and B D. None of these	both A and B	K/A	M
8	If $\mathrm{z}=\mathrm{a}+\boldsymbol{i b}$, then real and imaginary parts respectively are: A. b, a B. -a, -b C. $\quad \mathrm{a}, \mathrm{b}$ D. None of these	a, b	K/A	M
9	. Conjugate of (a,-b) is: A. a,b B. -a, -b C. $\quad-\mathrm{a}, \mathrm{b}$ D. None of these	a, b	K/A	E
10	Modulus of complex number $\mathrm{z}=\mathrm{a}+\boldsymbol{i b}$ is $\mathrm{z}=$? A. $\sqrt{\mathbf{a}^{2}-b^{2}}$ B. $\sqrt{a^{2}+b^{2}}$ C. $\sqrt{\mathbf{b}^{2}-\mathbf{a}^{2}}$ D. None of these	$\sqrt{\mathbf{a}^{2}+\mathbf{b}^{2}}$	K/A	E
11	$i^{4}=?$ A. a) $-i$ B. $\quad 1$ C. -1 D. None of these	1	K/A	M
12	$\left\|5-2 i^{2}\right\|=?$ A. $\quad 2$ B. 5 C. $\quad 3$ D. $\quad 7$	7	K/A	M
13	If $\mathbf{Z}_{1}=\sqrt{3}-i, Z_{2}=\sqrt{3}-i$, then $\left\|Z_{1} Z_{2}\right\|=$? A. 3 B. $\quad 2$ C. $\quad 1$ D. 4	2	K/A	E
14	Real part $i^{3}(3-5 i)$ is: A. 3 B. -5 C. 5 D. None of these	-5	K/A	E

15	Which of the following has the same value as \boldsymbol{i}^{113} A. i B. -1 C. $\quad-i$ D. 1	i	K/A	M
16	The complex root of unity is: A. Cube of each other B. Square root of each other C. Square of each other D. None of these	Square root of each other	K/A	M
17	The product of the cube root of unity is: A. 0 B. 4 C. $\quad \mathbf{- 1}$ D. 1	1	K/A	E
18	When \mathbf{b}^{2} - 4ac is a perfect square then the root will be: A. Irrational B. Rational C. Squared D. Liner	Rational	K/A	E
19	The nature of the roots of the equation $2 x^{2}-7 x+6=0$ is; A. Real, rational, unequal B. Positive, imaginary, irrational C. Unequal, imaginary, real D. Negative, unreal, equal	Real, rational, unequal	K/A	M
20	When $x^{2}-5 x+6=0$ then the roots will be; A. Real and rational B. Real and irrational C. Real and unequal D. imaginary	Real and unequal	K/A	M
21	For what value of p, q will both roots of the equation $y^{2}+(2 p$ -8) $y=2 q+9$ vanish; A. $(4,3)$ B. $\left(4, \frac{-9}{2}\right)$ C. $\quad(\mathbf{2}, \mathbf{3})$ D. $(\mathbf{9}, 4)$	$\left(4, \frac{-9}{2}\right)$	K/A	E
22	Which term of the A.P. 5, 8, 11, 24, $\ldots \ldots \ldots$. is 320? A. $\quad 104^{\text {th }}$ B. $\quad 105^{\text {th }}$ C. $\quad 106^{\text {th }}$ D. none of these	None of these	K/A	E
23	What is the nth term of G.P. for which $a=8, r=3 / 2$ and $n=5$. A. $27 / 2$ B. $57 / 2$ C. $81 / 2$ D. None of these	81/2	K/A	M
24	The sum of $1,3,5,7,9, \ldots \ldots \ldots$ up to 20 term is: A. 400 B. 563 C. 472 D. None of these	400	K/A	M

25	A number ' A ' is said to be the arithmetic mean between two number a and b if a, d, b, form: A. A geometric sequence B. An Arithmetic sequence C. A sequence D. None of these	An Arithmetic sequence	K/A	E
26	Which one of the following is a geometric sequence? A. $\quad 2,4,8, \ldots \ldots$. B. $\quad 1,2,4,5, \ldots \ldots$ C. $\quad 3,7,15,19, \ldots$. D. None of these	$2,4,8, \ldots$ \ldots	K/A	E
27	The first term of a harmonic sequence is 4 and the fourth term is $2 / 5$ then what will be the $10^{\text {th }}$ term. A. $\frac{1}{9}$ B. $\frac{1}{5}$ C. $\frac{1}{7}$ D. None of these	$\frac{1}{7}$	K/A	M
28	If A, G and H are A. m, G.M and H.M between two number then which statement is true? A. $\quad \mathbf{G}>\mathbf{A}$ B. $\quad \mathbf{G}>\mathbf{H}$ C. $\quad \mathbf{G}<\mathbf{H}$ D. None of these	G $>\mathbf{H}$	K/A	M
29	$\frac{(n+5)!}{(n-4)!}=?$ A. $\frac{1}{\mathrm{n}-4}$ B. $\frac{1}{n-5}$ C. $\quad(\mathrm{n}+5)$ D. None of these	($\mathrm{n}+5$)	K/A	E
31	$\frac{2!}{0!}=?$ A. $\quad 0$ B. 2 C. $\quad 1$ D. None of these	2	K/A	E
32	How many distinct four numbers can be formed the integers $\mathbf{1 , 2 , 3}, 4,5,6$ if each integer is used only once. A. $\quad 120$ B. $\quad 280$ C. $\quad 360$ D. None of these	360	K/A	M
33	What is the value of ${ }^{16} \mathbf{P}_{4}$? A. 4680 B. 43680 C. 3680 D. None of these	43680	K/A	M

34	The circumference of a circle is \qquad A. $\quad \pi$ B. $\quad \pi r^{2}$ C. $\quad 2 \pi r$ D. None of these	$2 \pi \mathrm{r}$	K/A	E
35	The area of a circle is . \qquad A. $\quad \pi r^{2}$ B. $\quad \pi r^{3}$ C. $\quad 2 \pi r$ D. None of these	$\pi \mathrm{r}^{2}$	K/A	E
36	A circle is called unit circle when its radius is A. 1 cm B. 1 unit C. $\quad 1 \mathrm{~m}$ D. None of these	1 unit	K/A	M
37	A line which touches any two points on a circle internally is called A. Diameter B. Secant line C. Chord D. Tangent line	Chord	K/A	M
38	A chord which passes through the center of a circle is called A. Radius B. Secant line C. Diameter D. None of these	Diameter	K/A	E
39	The distance \mathbf{b} / \mathbf{w} center to any point on a circle is called A. Diameter B. Radius C. Chord D. None of these	Radius	K/A	E
40	A line touches any one point on a circle is called A. Diameter B. Radius C. Tangent line D. Secant line	Tangent line	K/A	M
41	$\mathrm{S}=\ldots \ldots \ldots . .$ A. $\mathbf{r \theta}$ $\begin{array}{ll}\text { B. } & \frac{\theta}{r} \\ \text { C. } & \frac{\mathrm{r}}{\boldsymbol{r}}\end{array}$ D. None of these	r θ	K/A	M
42	If $\operatorname{Sin} \theta=-\frac{3}{5}$ and $\operatorname{Cos} \theta=\frac{4}{5}$, then $\rho(\theta)$ lies in the A. $\quad 2^{\text {nd }}$ quadrant B. $\quad 3^{\text {rd }}$ quadrant C. $\quad 4^{\text {th }}$ quadrant D. None of these	$4^{\text {th }}$ quadrant	K/A	E

43	The value of $\frac{3 \pi}{4}$ radian in degree is A. $\quad 54^{\circ}$ B. $\quad 60^{\circ}$ C. $\quad 108^{\circ}$ D. None of these	None of these	K/A	E
44	$(\operatorname{Sec} \boldsymbol{\theta}+1)(\operatorname{Sec} \boldsymbol{\theta}-1)=\ldots \ldots \ldots$. A. $\operatorname{Cot}^{2} \boldsymbol{\theta}$ B. $\quad \operatorname{Sec}^{2} \boldsymbol{\theta}$ C. $\quad \operatorname{Tan}^{2} \theta$ D. $\quad \operatorname{Cos}^{2} \theta$	$\operatorname{Tan}^{2} \theta$	K/A	M
45	$\sqrt{\frac{1+\operatorname{Cot}^{2} \theta}{1+\operatorname{Tan}^{2} \theta}}=\ldots \ldots \ldots$ A. $\operatorname{Cot} \theta$ B. $\operatorname{Sec} \theta$ C. $\operatorname{Cosec} \theta$ D. 1	$\operatorname{Cot} \theta$	K/A	M
46	The value of $\operatorname{Sin} 15^{\circ}$ is A. $\frac{\sqrt{3}-1}{2 \sqrt{2}}$ B. $\frac{\sqrt{5}-1}{4}$ C. $\frac{\sqrt{2}-\sqrt{3}}{2}$ D. None of these	$\frac{\sqrt{3}-1}{2 \sqrt{2}}$	K/A	E
47	The amount of rotation of line is called A. Measure of sides B. Measure of angle C. Both A \& B D. None of these	Measure of angle	K/A	E
48	The amplitude of $7 \operatorname{Cos} 3 x$ is: A. $\quad 7$ B. 3 C. $\quad 21$ D. None of these	7	K/A	M
49	What is the domain of the Cosx? A. $\quad R$ B. $\quad R-\left\{x \quad x=(2 k+1) \frac{3 \pi}{8}, k \in Z\right\}$ C. $\quad \mathbf{c}) \pi$ D. $\quad \mathbf{R}-\{\mathbf{X} \quad \mathbf{x}=\mathrm{k} \boldsymbol{\pi}, \mathrm{k} \in \mathbf{Z}\}$	R	K/A	M
50	The complete graph of a trigonometry function is \qquad Series. A. A finite B. An infinite C. A complete series D. None of these	An infinite	K/A	E
51	For a triangle ABC , the true statement is: A. $\quad A C^{2}=A B^{2}+A C^{2}$ B. $\quad \mathbf{A c}=\mathbf{A B}+\mathbf{B C}$ C. $\quad \mathbf{A C}<\mathbf{A B}+\mathbf{B C}$ D. None of these	$\begin{aligned} & \mathrm{AC}<\mathrm{AB} \\ & +\mathrm{BC} \end{aligned}$	K/A	E

52	In A triangle, the perpendicular from vertex \mathbf{c} bisects the base. The triangle is: A. Isosceles B. Obtuse C. Right angle D. None of these	Isosceles	K/A	M
53	If a, b and c the length of sides of the triangle $A B C$ and \propto, β and γ are corresponding angle of a triangle, then mathematically law of Sine is written as: A. $\quad \frac{\operatorname{Sin} \alpha}{\mathrm{a}}=\frac{\operatorname{Sin} \beta}{\mathrm{b}}=\frac{\operatorname{Sin} \gamma}{\mathrm{c}}$ B. $\quad \frac{a}{\operatorname{Sin} \alpha}=\frac{b}{\operatorname{Sin} \beta}=\frac{\mathbf{c}}{\operatorname{Sin} \gamma}$ C. $\quad a^{2}=b^{2}+c^{2}-2 a b \operatorname{Cos} \alpha$ D. None of these	$\begin{aligned} & \frac{a}{\operatorname{Sin} \alpha}=\frac{b}{\operatorname{Sin} \beta} \\ & =\frac{c}{\operatorname{Sin} \gamma} \end{aligned}$	K/A	M
54	If a, b and c the length of sides of the triangle ABC and \propto, β and γ are corresponding angle of a triangle, then Cosine of the angle " a " triangle is define as: A. $\quad \operatorname{Cos} \alpha=\frac{\mathbf{a}^{2}+\mathbf{b}^{2}+\mathbf{c}^{2}}{2 \mathbf{a b}}$ B. $\quad \operatorname{Cos} \alpha=\frac{b^{2}+c^{2}+a^{2}}{2 b c}$ C. $\quad \operatorname{Cos} \alpha=\frac{\mathbf{b}^{2}+\mathrm{c}^{2}-\mathrm{a}^{2}}{2 \mathrm{bc}}$ D. None of these	$\begin{aligned} & \operatorname{Cos} \alpha= \\ & \frac{b^{2}+c^{2}-a^{2}}{2 b c} \end{aligned}$	K/A	E
55	In any triangle ABC , the measure of the sides is proportional to the Sine of the opposite angle. What is Law called? A. The law of Sine B. The law of Cosine C. The law of Tangent D. None of these	The law of Sine	K/A	E
56	If a, b, c are the sides of the triangle, then ' R ' is: A. $\frac{\mathrm{abc}}{4}$ B. $\frac{4 \Delta}{\mathrm{abc}}$ C. $\frac{a b c}{4 \Delta}$ D. $\frac{\Delta}{s}$	$\frac{a b c}{4 \Delta}$	K/A	M
57	Area of triangle with each side 3 is: A. $\quad 9$ B. $\frac{9 \sqrt{3}}{4}$ C. 27 D. None of these	$\frac{9 \sqrt{3}}{4}$	K/A	M
58	If $\mathrm{S}=$ A. $\quad \frac{1}{2}(b+c-a)$ B. $\quad \frac{1}{2}(a+b+c)$ C. $\quad \frac{1}{2}(a-b-c)$ D. None of these	$\left\|\frac{1}{2}(a+b+c)\right\|$	K/A	E

59	Two coins are tossed simultaneously the probability of obtaining no head no tail A. $\quad 0$ B. $\frac{1}{4}$ C. $\quad 1$ D. $\frac{2}{4}$	0	K/A	E
60	Three coins are tossed simultaneously. What is the probability of obtaining all heads? $\begin{array}{ll}\text { A. } \quad \frac{5}{8} \\ & 3\end{array}$ B. $\quad \frac{3}{8}$ C. $\quad 1$ D. $\frac{1}{8}$	$\frac{1}{8}$	K/A	M
61.	The in radius r of triangle $A B C$ is equal to a. Δ b. $\frac{\Delta}{s}$ c. $\frac{s}{\Delta}$ d. $\frac{\Delta}{s-a}$	$\frac{\Delta}{s}$	K/A	M
62.	The number of ways in which 5 persons can be seated in a row is a. $\quad 120$ b. $\quad 24$ c. $\quad 6$ d. Infinite	120	K/A	E
63.	If $\|x\|<1$ then $1+2 x+3 x^{2}+4 x^{2}+$ \qquad a. $\quad(1+x)^{-1}$ b. $\quad(1-x)^{-1}$ c. $\quad(1+x)^{-2}$ d. $\quad(1-x)^{-2}$	$(1-x)^{-2}$	K/A	E
64.	$\left(\mathbf{A} \cap \mathbf{A}^{\prime}\right)$ as equal to a. \mathbf{U} b. ϕ c. $\{\phi\}$ d. \mathbf{A}^{\prime}	ϕ	K/A	M
65.	If I is an imaginary number then i^{33} a. I b. $\quad-\mathbf{i}$ c. $\quad 1$ d. -i	-i	K/A	M
66.	If $\mathrm{z}=-\mathbf{3 i}+2$, then $\mathrm{z}+\hat{\mathrm{z}}=$ a. $\quad 6 \mathbf{i}$ b. $\quad 6$ c. $\quad 0$ d. 4	4	K/A	E

67.	The sum of the roots of the equation $y^{2}-2 y+8=0$ a. $\quad 2$ b. $\quad 4$ c. $\quad 8$ d. $\quad-8$	2	K/A	E
68.	$(2,3)$ is equal to a. $\quad 1$ b. $\quad 60$ c. $\quad 120$ d. $\quad 240$	60	K/A	M
69.	The total number of terms in the expansion of $(\mathbf{a}+\mathrm{b})^{\mathrm{n}}(\mathrm{n} \in \mathrm{N})$ is a. $\quad n$ b. $\quad n+1$ c. $\quad \mathbf{n}-1$ d. $\quad \mathrm{n}+2$	$\mathrm{n}+1$	K/A	M
70.	The geometric means between 2 and $1 / 2$ are equal to a. ± 2 b. $\pm \sqrt{2}$ c. $\pm \frac{1}{\sqrt{2}}$ d. ± 1	± 1	K/A	E
71.	$\sum \mathbf{n}$ is equal to a. $\frac{\mathrm{n}(\mathrm{n}+1) \mathrm{)}}{2}$ b. $\frac{\mathrm{n}(\mathrm{n}+1) \mathrm{)}}{4}$ c. $\frac{n(n+1)(2 n+1)}{6}$ d. $\frac{\mathrm{n} 2(\mathrm{n}+1))}{3}$	$\frac{n(n+1))}{2}$	K/A	E
72.	If $\mathbf{1 , x} \mathbf{x} \mathbf{1 , 3}$ are in A.P then $\mathbf{x}=$ a. $\quad 2$ b. $\quad 1$ c. $\quad-2,4$ d. 3	3	K/A	M
73.	The number of permutations of the letters of the word COMMITTEE is a. $\frac{9!}{2!\times 2!\times 2!}$ b. $\frac{6}{222}$ c. $\frac{9}{221}$ d. $\frac{222}{9}$	$\frac{9!}{2!\times 2!\times 2!}$	K/A	M
74.	If arc length S is equal to the radius r, then the central angle θ is a. 0 radian b. $\quad 1 / 2$ radian	1 radian	K/A	E

	c. 2 radian d. $\mathbf{1}$ radian			
75.	In a triangle ABC if $\gamma=\mathbf{9 0 ^ { \circ }}$ then the law of cosine reduces to a. $\quad a^{2}=b^{2}+c^{2}$ b. $\quad b^{2}=a^{2}-c^{2}$ c. $\quad \mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$ d. $\quad \mathbf{c}^{2}=\mathbf{a}^{2}-\mathbf{b}^{2}$	$\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$	K/A	E
76.	If $r \cos \theta=4$ and $r \sin \theta=3$ then $r=$ a. $\quad 3$ b. $\quad 5$ c. $\quad 6$ d. $\quad 2$	5	K/A	M
77.	A coin tossed thrice. The probability of getting three tail is a. $\frac{1}{2}$ b. $\frac{3}{2}$ c. $\frac{1}{8}$ d. $\frac{2}{3}$	$\frac{1}{8}$	K/A	M
78.	$\frac{1}{2}-2 \sin ^{2} \theta$ is equal to a. $\quad \sin \theta$ b. $\quad \cos \theta$ c. $\quad \operatorname{Sin} 2 \theta$ d. $\cos 2 \theta$	$\cos 2 \theta$	K/A	E
79.	The angle 135° in radians is a. $\frac{5 \pi}{4}$ b. $\frac{3 \pi}{4}$ c. $\frac{2 \pi}{4}$ d. 135π	$\frac{3 \pi}{4}$	K/A	E
80.	The period of $\sin x$ is a. $\quad \pi / 2$ b. $\quad \pi$ c. $\quad-\pi$ d. $\quad 2 \pi$	2π	K/A	M
81.	If roots of the equation $a x^{2}+b x+c=0$ are real then $b^{2}-4 a c$ is a. Positive b. Negative c. Zero d. Perfect square	Negative	K/A	M
82.	$\operatorname{Tan}\left(180^{\circ}-\theta\right)=$ a. $\quad \tan \theta$ b. $\quad-\boldsymbol{\operatorname { t a n }} \theta$ c. $\quad \cot \theta$ d. $-\cot \theta$	$-\boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}$	K/A	E

83.	If ω is a complex cube of unity then $\left(1+\omega+\omega^{2}\right)^{2}$ will be equal to a. $\quad 0$ b. $\quad 1$ c. $\quad 4$ d. $\boldsymbol{\omega}^{2}$	0	K/A	E
84.	$1 / 1+\tan ^{2} \theta$ a. $\sec ^{2} \theta$ b. $\quad \cos ^{2} \theta$ c. $\quad \sin ^{2} \theta$ d. $\cot ^{2} \theta$	$\sec ^{2} \boldsymbol{\theta}$	K/A	M
85.	86. Area of a triangle ABC is a. $1 / 2$ ab $\sin \beta$ b. $1 / 2$ bc $\sin \alpha$ c. $1 / 2$ ac $\sin \gamma$ d. $1 / 2$ bc $\sin \beta$	$1 / 2 \mathrm{bc} \sin \boldsymbol{\alpha}$	K/A	M

